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Abstract

This note considers concentration bounds and some applications in learning theory.

1 Introduction

In a variety of settings, it is of interest to obtain bounds on the probability of tails of a random vari-
able, or two-sided inequalities that guarantee that a random variable is close to its mean or median,
e.g., in Figure 1(a). In this note, we explore some elementary techniques for obtaining both deviation
and concentration inequalities, mainly refer to Wainwright (2019); Duchi (2021); Mohri et al. (2018),
and their applications in learning theory, refer to Ma (2022). For different kinds of distributions, the
property of the distribution tail varies. Some distributions have light tails and decay fast, while others
may have heavy and long tails and decay slowly, refer to Figure 1(b). We will discuss some of them in
the remaining sections.

(a) Tail Probability (b) Distribution Tails

Figure 1: Concentration of Tails

We start with the famous concentration theorem in an asymptomatic way.

Theorem 1.1 (Weak Law of Large Number). Let {Xn} be a sequence of i.i.d. random variables, with
expectation EX then

1
n

n∑
k=1

Xk −EX→ 0 (1.1)

in probability.

However, we are more interested in how close the average is to its expectation given finite samples
in practice, which is also the non-asymptomatic view.
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2 Classical bounds

2.1 General Inqualities

Theorem 2.1 (Markov Inequality). Given a non-negative random variable X with finite mean, we have

P[X ≥ t] ≤ E[X]
t

∀t > 0 (2.1)

Proof. This is a simple instance of an upper tail bound.

E[X] =
∫ ∞

0
xP(X = x)dx ≥

∫ ∞
t

xP(X = x)dx ≥ t

∫ ∞
t

P(X = x)dx = tP[X ≥ t] (2.2)

Corollary 2.2 (High-order moments bound). For a random variable X with E[X] = µ, which has a finite
expectation of a central moment E

[
|X −µ|k

]
of order k,

P[|X −µ| ≥ t] ≤
E

[
|X −µ|k

]
tk

∀t > 0 (2.3)

Specially, with finite variance, we have Chebyshev Inequality:

P[|X −µ| ≥ t] ≤ var(X)
t2 ∀t > 0 (2.4)

Proof. Apply markov inequality, |X − µ|k is a non-negative random variable, with finite expectation of
central moment, then for all t ≥ 0

P[|X −µ| ≥ t] = P[|X −µ|k ≥ tk] ≤
E

[
|X −µ|k

]
tk

(2.5)

Theorem 2.3 (Chernoff Bound). Suppose that random variable X has a moment generating function in a
neighborhood of zero, meaning that there is some constant b > 0 such that the function ϕ(λ) = E

[
eλ(X−µ)

]
exists for all λ ∈ [−b,b], then

P[X −µ ≥ t] = P

[
eλ(X−µ) ≥ eλt

]
≤

E

[
eλ(X−µ)

]
eλt

∀t ≥ 0,λ ∈ [0,b] (2.6)

Optimizing the choice of λ so as to obtain the tightest result yields the Chernoff bound,

P[X −µ ≥ t] ≤ inf
λ∈[0,b]

{
E

[
eλ(X−µ)

]
− eλt

}
∀t ≥ 0 (2.7)

Remark 2.4. In general, Markov inequality and Chebyshev inequality are sharp in the sense that we
can find some distribution for which the bound is tight. However, for small tail t, the bound derived
from Markov (Chebyshev) inequality goes to infinite, which is terrible. In many cases (some kinds of
distributions), we can improve the O(1/tk) rate to an O(exp(poly(t))) rate, and we still have a tight bound
for small tail t. An example is as follows.

Example 2.5 (Gaussian tail bounds). Let X ∼N
(
µ,σ2

)
be a Gaussian random variable with mean µ and

variance σ2. We have
E

[
eλ(X−µ)

]
= e

λ2σ2
2 , ∀λ ∈R (2.8)

By optimizing the choice of λ defined in Chernoff bound, we obtain

P[X −µ ≥ t] ≤ e
− t2

2σ2 ∀t ≥ 0 (2.9)
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Proof. By
∫∞
−∞ exp(−x2)dx =

√
π, we have

E[exp(λ(X −µ))] =
∫ ∞
−∞

1
√

2πσ2
exp

(
λx − 1

2σ2 x
2
)
dx

= exp
(
λ2σ2

2

)
·
∫ ∞
−∞

1
√

2πσ2
exp

(
− 1

2σ2

(
x −λσ2

)2
)
dx

= exp
(
λ2σ2

2

)
·
∫ ∞
−∞

1
√

2πσ2
·
√

2σ2 exp(−y2)dy y =
1
√

2σ2
(x −λσ2)

= exp
(
λ2σ2

2

)
(2.10)

Therefore, taking λ = t
σ2 by Chernoff bound, we have

P[X −µ ≥ t] ≤ inf
λ∈R

{
E

[
eλ(X−µ)

]
− eλt

}
= exp

{
inf
λ∈R

λ2σ2

2
+λt

}
= exp

{
− t2

2σ2

} (2.11)

2.2 Sub-Guassian Variables and Bounds

Motivated by Chernoff Bound and Guassian example, we introduce the following class of random vari-
ables.

Definition 2.6 (sub-Guassian Variable). A random variable X with mean µ = E[X] is sub-Gaussian if
there is a positive number σ such that

E

[
eλ(X−µ)

]
≤ e

λ2σ2
2 ∀λ ∈R (2.12)

The definition requires that the central moments of X exist and grow mildly,

E

[
eλ(X−µ)

]
=
∞∑
k=0

λk

k!
E(X −µ)k (2.13)

Theorem 2.7 (sub-Gaussian Bound). Any sub-Gaussian variables satisfy the concentration inequality
for tails, for ∀t > 0

P (X −µ ≥ t)∨ P (X −µ ≤ −t) ≤ e
− t2

2σ2 (2.14)

Proof. Similar to Chernoff technique in Example 2.5 and optimize the parameter λ.

Example 2.8 (Bounded random variables). Random variable supported on some interval [a,b] is sub-
Gaussian with σ = b−a

2 .

Proof. We assume EX = µ = 0 for simplification. By definition, we aim to prove E

[
eλX

]
≤ e

λ2(b−a)2
8 . By

convexity and bounded assumpetion, we have

eλx ≤ x − a
b − a

eλb +
b − x
b − a

eλa ∀x ∈ [a,b]
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Take expectation on both sides,

E[eλX ] ≤ −a
b − a

eλb +
b

b − a
eλa

= γe(1−γ)u + (1−γ)e−γu u = λ(b − a) ≥ 0,γ = − a
b − a

≜ eg(u)

(2.15)

Then we analyse the bound of g(u).

g(u) = −γu + ln(γeu + 1−γ) g(0) = 0

g ′(u) = −γ +
γeu

γeu + 1−γ
g ′(0) = 0

g ′′(u) =
γeu(1−γ)

(γeu + 1−γ)2 ≤
1
4

(a+ b)2 ≥ 4ab

(2.16)

By Taylor’s theorem and Lagrange remainder, we have

g(u) = g(0) +ug ′(0) +
u2

2
g ′′(ξ) ξ ∈ [0,u]

=
u2

2
g ′′(ξ) ≤ u2

8
=
λ2(b − a)2

8

(2.17)

Thus, we complete the proof by combining Equation 2.17 and 2.15.

Property 1 (sub-Gaussian random variables are closed under linear combination). If X1, · · · ,Xn are in-
dependent sub-Gaussian with parameter σ2

1 , · · · ,σ2
n , then Z =

∑n
i=1Xi is sub-Gaussian with parameter

σ2 =
∑n

i=1σ
2
i

Proof. The property is easy to verify by definition.

E

[
eλ(Z−EZ)

]
= E

 n∏
i=1

eλ(Xi−EXi )

 =
n∏
i=1

E

[
eλ(Xi−EXi )

]
≤ eλ

2
∑n
i=1 σ2

i
2 (2.18)

As a consequence of the property 1, we obtain an important result applicable to sums of independent
sub-Gaussian random variables, known as the Hoeffding bound.

Theorem 2.9 (Hoeffding Bound). Suppose that the variables Xi , i = 1, . . . ,n are independent, and Xi has
mean µi and sub-Gaussian parameter σi . Then,

P

 n∑
i=1

(Xi −µi) ≥ t

∨P
 n∑
i=1

(Xi −µi) ≤ −t

 ≤ exp

− t2

2
∑n

i=1σ
2
i

 ∀t ≥ 0 (2.19)

In particular, if Xi is supported on [ai ,bi], we have

P

 n∑
i=1

(Xi −µi) ≥ t

∨P
 n∑
i=1

(Xi −µi) ≤ −t

 ≤ exp

− 2t2∑n
i=1 (bi − ai)2

 ∀t ≥ 0 (2.20)

Corollary 2.10 (Uniform bound from Hoeffding bound). Suppose that the variables Xi , i = 1, . . . ,n are
independent, and ∀i,Xi has mean µ and sub-Gaussian parameter σi . Then, with probability at least 1−δ,

∣∣∣∣∣1n
n∑
i=1

(Xi −µ)
∣∣∣∣∣ ≤

√
2
∑n

i=1σ
2
i

n2 log
(2
δ

)
(2.21)
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In particular, if Xi is supported on [ai ,bi], then with probability at least 1− δ,∣∣∣∣∣1n
n∑
i=1

(Xi −µ)
∣∣∣∣∣ ≤

√
c

2n
log

(2
δ

)
(2.22)

where c = 1
n

∑n
i=1 (bi − ai)2.

Proof. Refer to Theorem 2.9, let δ = 2exp(−2nt2

c ) and solve the solution of t.

Theorem 2.11 (Equivalent characterizations of sub-Gaussian variables). Given any zero-mean random
variable X, the following properties are equivalent:

• There is a constant σ ≥ 0 such that for all λ ∈R E

[
eλX

]
≤ e

λ2σ2
2

• There is a constant c ≥ 0 and Gaussian variable Z ∼ N
(
0, τ2

)
such that for all s ≥ 0 P[|X | ≥ s] ≤

cP[|Z | ≥ s]

• There is a constant θ ≥ 0 such that for all k = 1,2, . . . E

[
X2k

]
≤ (2k)!

2kk!
θ2k

• There is a constant σ ≥ 0 such that for all λ ∈ [0,1) E

[
e
λX2

2σ2

]
≤ 1√

1−λ

Proof. See Section 2.4 in Wainwright (2019) for the proof of these equivalences.

2.3 Sub-Exponential Variables and Bounds

The notion of sub-Gaussianity is fairly restrictive, so we now turn to the class of sub-Exponential vari-
ables, which are defined by a slightly milder condition on the moment generating function, i.e., the
moment generating function exists in a neighborhood of zero:

Definition 2.12 (sub-Exponential Variables). A random variable X with mean µ = E[X] is sub-exponential
if there are non-negative parameters (ν,b) such that

E

[
eλ(X−µ)

]
≤ e

λ2ν2
2 ∀|λ| < 1

b
(2.23)

Theorem 2.13 (Sub-exponential tail bound). Suppose that X is sub-exponential with parameters (ν,b).
Then

P[X −µ ≥ t]∨P[X −µ ≤ −t] ≤

e−
t2

2ν2 if 0 ≤ t ≤ ν2

b

e−
t

2b for t > ν2

b

= exp
(
−1

2
min

{
t2

ν2 ,
t
b

})
t ≥ 0 (2.24)

Proof. We still assume µ = 0 without generality. We follow the usual Chernoff-type approach and com-
bine it with the definition of the sub-exponential variable:

P(X ≥ t) ≤ e−λtE[eλX ] ≤ exp(−λt +
λ2ν2

2
)︸          ︷︷          ︸

g(λ,t)

λ ∈ [0,1/b), t ≥ 0

In order to complete the proof, it remains to compute the quantity g∗(t) := infλ∈[0,1/b) g(λ,t) for each
fixed t ≥ 0. Note that the unconstrained minimum of the function g(·, t) occurs at λ∗ = t

ν2 .

If 0 ≤ t < ν2

b , the unconstrained optimum corresponds to the constrained minimum as well, so that

g∗(t) = − t2

2ν2 over this interval.
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If t ≥ ν2

b , g(·, t) is monotonocally decreasing in the interval [0,λ∗], the constrained minimum is
achieved at the boundary point λ∗ = 1/b, and we have

g∗(t) = g(λ∗, t) = − t
b

+
ν2

2b2 ≤ −
t

2b
t ≥ ν2

b

Example 2.14 (Laplace Variable). (µ,ϵ)−Laplace distribution with µ mean and ϵ > 0 parameter: f (x) =
1

2ϵ exp −|x−µ|ϵ , which is a sub-exponential variable with parameter (2ϵ,ϵ).

Proof.

E[eλ(X−µ)] =
∫ ∞
−∞

eλx · 1
2ϵ

e−
|x|
ϵ dx =

1
2ϵ

{∫ 0

−∞
e(λ+ 1

ϵ )xdx+
∫ ∞

0
e(λ− 1

ϵ )xdx

}
=

1
2ϵ

( ϵ
λϵ+ 1

− ϵ
λϵ − 1

)
=

1
1−λ2ϵ2 |λ| < 1

ϵ

≤ exp
(
λ2 · 4ϵ2

2

)
|λ| < 1

ϵ

(2.25)

Clearly, the moment generating function does not exist for |λ| > 1/ϵ. The tail of this distribution does not
decay as fast as the Gaussian variables, but we still can find useful bounds through Theorem 2.13.

Example 2.15 (Exponential Variable). θ-exponential distribution defined in X ∈ [0,∞) with parameter
θ > 0: f (x) = θe−θx, which is a sub-exponential variable with parameter ( 2

θ ,
2
θ ).

Proof. The mean of exponential distribution is E(X) =
∫∞

0 x · θe−θxdx = −
[
e−θxx

∣∣∣∞
0
−
∫∞

0 e−θxdx
]

= 1
θ .

(Integration by Parts:
∫
udv = uv −

∫
vdu.)

E[eλ(X− 1
θ )] =

θ
θ −λ

e−
λ
θ λ < θ

=
1

1− y
e−y = exp(− log(1− y)− y)︸              ︷︷              ︸

g(y)

y =
λ
θ
∈ (0,1)

≤ exp
(

y2

1− y

)
g(y) ≤

y2

1− y
,y ∈ (0,1)

≤ exp(2y2) y ∈ (0,
1
2

)

= exp
(

2λ2

θ2

)
λ ∈ (0,

θ
2

)

(2.26)

Example 2.16 (χ2 Variable with 1 degree of freedom). Let Z ∼N (0,1), and consider the random variable
X = Z2, which is a sub-exponential variable with parameter (2,4).

Proof. The mean of X is E(X) =
∫∞
−∞ z2 · 1√

2π
e−

z2
2 dz = − 1√

2π

(
ze−

z2
2
∣∣∣∞−∞ − ∫∞

−∞ e−
z2
2 dz

)
= − 1√

2π
(0−
√

2π) = 1.

E[eλ(X−1)] =
∫ ∞
−∞

eλ(z2−1) · 1
√

2π
e−

z2
2 dz

=
e−λ
√

2π

∫ ∞
−∞

e−
1−2λ

2 z2
dz =

e−λ
√

2π

√
2

√
1− 2λ

∫ ∞
−∞

e−y
2
dy y =

√
1− 2λ

2
z

=
e−λ
√

1− 2λ
λ ∈ [0,

1
2

)

≤ e2λ2
= e

4λ2
2 , λ ∈ [0,

1
4

)

(2.27)
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Property 2 (sub-exponential random variables are closed under linear combination). Consider an inde-
pendent sequence of {Xk}nk=1 of random variables, such that Xk has mean µk , and is sub-exponential with
parameter (νk ,bk). Then the variable Z =

∑n
k=1Xk is sub-exponential with parameters (ν∗,b∗), where

ν∗ :=

√√
n∑

k=1

v2
k b∗ := max

k=1,...,n
bk (2.28)

this observation leads directly to the upper tail bound (lower tail bound is the same)

P

 n∑
i=1

(Xk −µk) ≥ t

 ≤
 e

− t2

2v2∗ for 0 ≤ t ≤ v2
∗
b∗

e−
t

2b∗ for t > v2
∗
b∗

P

1
n

n∑
i=1

(Xk −µk) ≥ t

 ≤
e
− n2t2

2v2∗ for 0 ≤ t ≤ v2
∗

nb∗

e−
nt

2b∗ for t > v2
∗

nb∗
(2.29)

Proof. By independence and sub-exponential property,

E

[
eλ

∑n
k=1(Xk−µk )

]
=

n∏
k=1

E

[
eλ(Xk−µk )

]
≤

n∏
k=1

eλ
2ν2

k /2 = exp

λ2

2
·

n∑
k=1

ν2
k

 , |λ| < 1
maxk=1,...,n bk

(2.30)

The concentration bound can be directly obtained by Theorem 2.13.

Example 2.17 (χ2 variables). A chi-squared χ2 random variable with n degrees of freedom, denoted
by Y ∼ χ2

n, can be represented as the sum Y =
∑n

k=1Z
2
k where Zk ∼ N (0,1) are i.i.d. variates. Conse-

quently, the χ2-variate Y is sub-exponential with parameters (ν,b) = (2
√
n,4), and the preceding discus-

sion yields the two-sided tail bound

P


∣∣∣∣∣∣∣1n

n∑
k=1

Z2
k − 1

∣∣∣∣∣∣∣ ≥ t

 ≤ 2e−nt
2/8, for all t ∈ (0,1) (2.31)

Proof. Together with Example 2.16 and Property 2, we know Y is a sub-exponential variable with pa-
rameter (2

√
n,4). Then by Theorem 2.13, we can derive the bound.

2.3.1 Bernstein’s type Bound

The sub-exponential property can be verified by explicitly computing or bounding the moment gener-
ating function. This direct calculation may be impracticable in many settings, so it is natural to seek
alternative approaches. One method is based on control of the polynomial moments of X as follows:

Definition 2.18 (Bernstein’s condition). Given a random variable X with mean µ = E[X] and variance
σ2 = E [X −µ]2, we say that Bernstein condition with parameter b holds if∣∣∣∣E [

(X −µ)k
]∣∣∣∣ ≤ 1

2
k!σ2bk−2 for k = 2,3,4, . . . (2.32)

Indeed, if the random variables have a small variance, we would like to see it reflected in the expo-
nential tail bound where the variance does not appear in Hoeffding’s inequality.

Theorem 2.19 (Bernstein’s type Bound). For any random variable satisfying the Bernstein condition, we
have

E

[
eλ(X−µ)

]
≤ e

λ2σ2/2
1−b|λ| for all |λ| < 1

b
(2.33)
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and moreover, the concentration inequality

P[|X −µ| ≥ t] ≤ 2e
− t2

2(σ2+bt) for all t ≥ 0 (2.34)

In particular, X is (
√

2σ,2b)-sub-exponential. Finally, if X1, · · · ,Xn are i.i.d. random variables satisfying
Bernstein condition with b. Then, it holds that

P

1
n

n∑
i=1

(Xi −µ) ≥ t

 ≤ exp
(
− nt2

2(σ2 + bt)

)
P

 n∑
i=1

(Xi −µ) ≥ t

 ≤ exp
(

−t2

2(nσ2 + bt)

)
(2.35)

Proof. W.o.g., we assume µ = 0, and by Bernstein condition we have

E[exp(λX)] = 1 +
λ2σ2

2
+
∞∑
k=3

λkEXk

k!
≤ 1 +

λ2σ2

2
+
λ2σ2

2

∞∑
k=3

(|λ|b)k−2 |λ| < 1
b

= 1 +
λ2σ2

2
· 1

1− |λ|b
(by geometric series)

≤ exp
(

λ2σ2

2(1− |λ|b)

)
ex ≥ 1 + x,∀x ∈R

≤ exp
(
λ2(
√

2σ )2

2

)
|λ| < 1

2b

(2.36)

Thus, variable X satisfying Bernstein condition is a (
√

2σ,2b) sub-exponential variable. In addition to
the concentration bound derived by the sub-exponential theorem, we can get a sharper one.

P (X −µ ≥ t) = P
(
eλ(X−µ) ≥ eλt

)
≤ E[eλ(X−µ)] · e−λt ≤ exp

(
λ2σ2

2(1− bλ)
−λt

)
λ ∈ [0,

1
b

)

≤ exp
(
− t2

2(σ2 + bt)

)
let λ =

t

σ2 + bt
<

1
b

(2.37)

Here we just choose an approximated minimizer λ to get a simplified expression in the Chernoff bound,
rather than the exact minimizer λ∗. Besides, we omit the proof of the bounds for the sum of these
independent variables, since it’s easy to verify.

Example 2.20 (Bounded variable). Let X be a random variable with mean µ such that |X − µ| ≤ b, then
we have variance σ2 = E(X − µ)2 ≤ b2. Then the Bernstein condition is satisfied with b/3, and it is a
(
√

2σ,2b/3)−sub-exponential variable. We have sub-exponential bound as

P[X −µ ≥ t] ≤

e−
t2

4σ2 if 0 ≤ t ≤ 3σ2

b

e−
t

4b/3 for t > 3σ2

b

(2.38)

and Bernstein-type bound as

P[X −µ ≥ t] ≤ e
− t2

2(σ2+ b
3 t) for all t ≥ 0 (2.39)

and sub-Gaussian bound with parameter b as

P[X −µ ≥ t] ≤ e
− t2

2b2 for all t ≥ 0 (2.40)

Proof. Note that for k ≥ 2, k!
2 ≥ 3k−2 (can be verified by induction). Thus,∣∣∣∣E [

(X −µ)k
]∣∣∣∣ ≤ ∣∣∣∣E [

(X −µ)2
]∣∣∣∣ · ∣∣∣∣E [

(X −µ)k−2
]∣∣∣∣ ≤ σ2bk−2 ≤ 1

2
k!σ2

(
b
3

)k−2

for k = 2,3,4, . . . (2.41)

It means the Bernstein condition is satisfied with b/3, and applies the Theorem 2.13, 2.19 and 2.7.
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Corollary 2.21 (Uniform bound for Bernstein-type bound). Suppose that the variables Xi , i = 1, . . . ,n are
independent, and ∀i,Xi has mean µ and satisfies Bernstein condition with parameter (σi ,bi). Then, with
probability at least 1− δ, ∣∣∣∣∣1n

n∑
i=1

(Xi −µ)
∣∣∣∣∣ ≤ 2b

n
log

2
δ

+

√
2σ2

n
log

2
δ

(2.42)

In particular, if |Xi −µ| ≤ b, then with probability at least 1− δ,∣∣∣∣∣1n
n∑
i=1

(Xi −µ)
∣∣∣∣∣ ≤ 2b

3n
log

2
δ

+

√
2σ2

n
log

2
δ

(2.43)

Proof. Refer to Theorem 2.19, let δ = 2exp
(
− nt2

2(σ2+bt)

)
. By solving the equation, we have

t =
b
n

log
2
δ

+

√(
b
n

log
2
δ

)2

+
2σ2

n
log

2
δ
≤ 2b

n
log

2
δ

+

√
2σ2

n
log

2
δ

(2.44)

The last inequality is due to
√
a+ b ≤

√
a+
√
b,∀a ≥ 0,b ≥ 0.

Remark 2.22. For bounded variables, we can both apply sub-Gaussian bound, sub-exponential bound
and Bernstein-type bound. Since σ2 = E

[
(X −µ)2

]
≤ b2, this sub-exponential bound and Bernstein-type

bound sometimes can provide sharper inequality than the sub-Gaussian bound, because they use the
information of variance. E.g., when σ2≪ b2, as would be the case for a random variable that occasionally
takes on large values, but has a relatively small variance. Such variance-based control frequently plays
a key role in obtaining optimal rates in statistical problems.

In particular, we can take an interpretation from an example of a bounded variable. Referring to
uniform bound 2.10 and 2.21, consider a sequence of i.i.d. variables where |Xi − µ| ≤ b, we have event
with probability at least 1− δ:

Hoeffding:
∣∣∣∣∣1n

n∑
i=1

(Xi −µ)
∣∣∣∣∣ ≤

√
2b2

n
log

2
δ

= Õ
(
b
√
n

)

Bernstein:
∣∣∣∣∣1n

n∑
i=1

(Xi −µ)
∣∣∣∣∣ ≤

√
2σ2

n
log

2
δ

+
2b
3n

log
2
δ

= Õ
(
σ
√
n

+
b
n

) (2.45)

Therefore, for random variables with a small variance compared to their range, Bernstein-type inequal-
ity can give a sharper bound.

Theorem 2.23 (Bennett’s type Bound). Bennett’s inequality is a strengthening of Bernstein’s inequality,
which is at least as good as Bernstein’s inequality:

• Consider a zero-mean random variable such that |Xi | ≤ b for some b > 0, and σ2
i = var(Xi). Then

logE
[
eλXi

]
≤ σ2

i λ
2
{
eλb − 1−λb

(λb)2

}
for all λ ∈R (2.46)

• Given independent random variables X1, . . . ,Xn satisfying the condition of part (1), let σ2 :=
1
n

∑n
i=1σ

2
i be the average variance. Then

P

 n∑
i=1

Xi ≥ nδ

 ≤ exp
{
−nσ

2

b2 h

(
bδ

σ2

)}
(2.47)

where h(t) := (1 + t) log(1 + t)− t for t ≥ 0.
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Proof. See proposition 3.19 in Duchi (2021).

Theorem 2.24 (Equivalent characterizations of sub-exponential variables). For a zero-mean random
variable X, the following statements are equivalent:

• There are non-negative numbers (ν,b) such that for all |λ| < 1
b E

[
eλX

]
≤ e

ν2λ2
2

• There is a positive number c0 > 0 such that E
[
eλX

]
<∞ for all |λ| ≤ c0.

• There are constants c1, c2 > 0 such that for all t > 0 P[|X | ≥ t] ≤ c1e
−c2t

• The quantity γ := supk≥2

[
E[Xk]

k!

]1/k
is finite.

Proof. See Section 2.5 Appendix B in Wainwright (2019).

2.4 One-side Bound

Theorem 2.25 (One-sided Bernstein’s inequality). If X ≤ b almost surely, then

E

[
eλ(X−E[X])

]
≤ exp

 λ2

2 E

[
X2

]
1− bλ

3

 for all λ ∈ [0,3/b) (2.48)

Consequently, given n independent random variables such that Xi ≤ b almost surely,

P

 n∑
i=1

(Xi −E [Xi]) ≥ nδ

 ≤ exp

− nδ2

2
(

1
n

∑n
i=1E

[
X2
i

]
+ bδ

3

) (2.49)

Proof. See Proposition 2.14 in Wainwright (2019). Since the random variable is only bounded from
above, we can only derive bounds on its upper tail, rather than both sides.

3 Martingale-based methods

So far, we introduce various types of bounds on sums of independent random variables. Many problems
require bounds on more general functions of independent random variables, i.e., f (X1, . . . ,Xn). In this
case, we would like to understand when f (X1, . . . ,Xn) concentrates on its expectation. One classical
approach is based on martingale decompositions. There are several references introducing this, Duchi
(2021) is one high-level treatment not requiring measure-theoretic knowledge, and Wainwright (2019)
gives a more rigorous definition.

3.1 Martingale

Definition 3.1 (Martingale). Given a sequence {Yk}∞k=1 of random variables adapted to a filtration {Fk}∞k=1,
the pair {(Yk ,Fk)}∞k=1 is a martingale if, for all k ≥ 1,

E [|Yk |] <∞ and E [Yk+1 | Fk] = Yk (3.1)

It is frequently the case that the filtration is defined by a second sequence of random variables {Xk}∞k=1
via the canonical σ−fields Fk := σ (X1, . . . ,Xk). In this case, we say that {Yk}∞k=1 is a martingale sequence
with respect to {Xk}∞k=1.

Definition 3.2 (Martingale Difference). Let D1,D2, . . . be a sequence of random variables. They form a
martingale difference sequence if Yn :=

∑n
i=1Di is a martingale. In particular, for k ≥ 1, we have

E [|Dk |] <∞ and E [Dk+1 | Fk] = 0.
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Example 3.3 (Doob Martingales). Given a sequence of independent random variables {Xk}∞k=1, define
Yk = E [f (X) | X1, . . . ,Xk] for k = 1, . . . ,n − 1, and Y0 = E[f (X)],Yn = f (X) for some function f : X n → R.
Suppose that E[|f (X)|] < ∞, then {Yk}∞k=1 is a martingale sequence with respect to {Xk}∞k=1, associated
with function f .

Proof. In term of the shorthand Xk
1 = (X1, . . . ,Xk), for the first property we have

E [|Yk |] = E

[∣∣∣∣E [
f (X) | Xk

1

]∣∣∣∣] ≤ E[|f (X)|] <∞,

where the bound is due to the convexity of | · |, that is
∣∣∣EXk+1:n

[f (X)|Xk
1]
∣∣∣ ≤ EXk+1:n

[|f (X)|]
∣∣∣Xk

1 . Turning to
the second property, we have

E

[
Yk+1 | Xk

1

]
= E

[
E

[
f (X) | Xk+1

1

]
| Xk

1

] (i)
= E

[
f (X) | Xk

1

]
= Yk

where we have used the tower property of conditional expectation in step (i).

Remark 3.4. By the definition of Doob martingale, we see that Y0 is a constant, and the random variable
Yk will tend to exhibit more fluctuations as we move along the sequence from Y0 to Yn. Thus, the
martingale approach can result in the tail bound based on the telescoping decomposition,

f (X)−E[f (X)] = Yn −Y0 =
n∑

k=1

(Yk −Yk−1)︸      ︷︷      ︸
Dk

(3.2)

where the sequence {Dk}nk=1 is an example of a martingale difference sequence, which captures exactly the
difference between f and its expectation, and plays an important role in the development of concentra-
tion inequalities.

Example 3.5 (Partial sums as martingales). Let {Xk}∞k=1 be a sequence of i.i.d. random variables with
mean µ, and define the partial sums Sk :=

∑k
j=1Xj . Defining Fk = σ (X1, . . . ,Xk), the variable Sk is mea-

surable with respect to Fk , then Yk := Sk − kµ for k ≥ 1 is a martingale sequence with respect to {Xk}∞k=1.

Proof. The recentered partial sums of an i.i.d. sequence is the simplest instance of a martingale.

E [Yk+1 | Fk] = E [SK+1 − (K + 1)µ | X1, . . . ,Xk] = E [Xk+1 −µ] + Sk − kµ = Yk .

3.2 Concentration bounds for martingale difference sequences

With these motivating ideas introduced, we turn to provide generalizations of our concentration in-
equalities from sub-Gaussian, sub-exponential sums to sub-Gaussian, sub-exponential martingales.

Definition 3.6 (Sub-Gaussian martingale difference). Let {(Dk ,Fk)}∞k=1 be a martingale difference se-
quence, Then Dk is a σ2

k -sub-Gaussian martingale difference if

E

[
eλDk | Fk−1

]
≤ e

λ2σ2
k

2 ∀k and λ ∈R (3.3)

Theorem 3.7 (Azuma–Hoeffding Inequality). Let {(Dk ,Fk)}∞k=1 be a σ2
k -sub-Gaussian martingale differ-

ence sequence. Then Mn =
∑n

k=1Dk is
∑n

k=1σ
2
k -sub-Gaussian, and,

P [Mn ≥ t]∨P [Mn ≤ −t] ≤ exp

− nt2

2
∑n

k=1σ
2
k

 ∀t ≥ 0 (3.4)
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Corollary 3.8 (McDiarmid Inequality). Let Xi be independent random variables, and f : X n→R satisfy
bounded difference with constants ci . That is, ∀i = 1, . . . ,n,xn1 ∈ X n and x′i ∈ X , we have∣∣∣∣f (

xi−1
1 ,xi ,x

n
i+1

)
− f

(
xi−1

1 ,x′i ,x
n
i+1

)∣∣∣∣ ≤ ci . (3.5)

It implies that martingale difference |Di | ≤ ci . Then, Mn = f (X)−E[f (X)] is 1
4
∑n

i=1 c
2
i -sub-Gaussian, and

P [Mn ≥ t]∨P [Mn ≤ −t] ≤ exp

− 2t2∑n
i=1 c

2
i

 ∀t ≥ 0 (3.6)

Proof. This condition also means that f is c-Lipschitz with respect to the Hamming norm dH (x,y) =∑n
i=1 I[xi , yi], which counts the number of positions in which x and y differ, then the bounded differ-

ence inequality holds with parameter L uniformly across all coordinates.

Definition 3.9 (Sub-exponential martingale difference). Let {(Dk ,Fk)}∞k=1 be a martingale difference se-
quence, Then {Dk} is a (νk ,bk)-sub-exponential martingale difference if

E

[
eλDk | Fk−1

]
≤ eλ

2v2
k /2 ∀k and |λ| < 1/bk (3.7)

Theorem 3.10. Let {(Dk ,Fk)}∞k=1 be a (νk ,bk)-sub-exponential martingale difference sequence. Then

Mn =
∑n

k=1Dk is sub-exponential with parameters
(√∑n

k=1 v
2
k , α∗) where α∗ := maxk=1,...,nαk , and

P [Mn ≥ t]∨P [Mn ≤ −t] ≤

e
− t2

2
∑n
k=1 v2

k if 0 ≤ t ≤
∑n

k=1 v
2
k

αk

e−
t

2α∗ if t >
∑n

k=1 v
2
k

α∗
.

(3.8)

Theorem 3.11 (Azuma–Bernstein Inequality). Let {(Dk ,Fk)}∞k=1 be a martingale difference sequence, and
|Dk | ≤ C, Var(Xk |Fk−1) ≤ σ2

i . Then for Mn =
∑n

k=1Dk ,

P [Mn ≥ t]∨P [Mn ≤ −t] ≤ exp

− t2

2
(∑n

k=1σ
2
i + 1

3Ct
) (3.9)

Example 3.12 (Rademacher Complexity1). Let X be some space, and let F be some collection of func-
tions f : X → R. Let εi ∈ {−1,1} be a collection of independent random sign vectors. Then the empirical
Rademacher complexity of F is

Rn
(
F | xn1

)
:=

1
n
E

sup
f ∈F

n∑
i=1

εif (xi)

 , (3.10)

where the expectation is over only the random signs εi . (In some cases, depending on context and
convenience, one takes the absolute value

∣∣∣∑i εif (xi)
∣∣∣.) The Rademacher complexity of F is

Rn(F ) := E

[
Rn

(
F | Xn

1
)]
, (3.11)

the expectation of the empirical Rademacher complexities.
If f : X → [b0,b1] for all f ∈ F , then the Rademacher complexity satisfies bounded differences,

because for any two sequences xn1 and zn1 differing in only element j, we have

n
∣∣∣Rn

(
F | xn1

)
−Rn

(
F | zn1

)∣∣∣ ≤ E

sup
f ∈F

n∑
i=1

εi (f (xi)− f (zi))

 = E

sup
f ∈F

εi
(
f
(
xj

)
− f

(
zj
)) ≤ b1 − b0. (3.12)

Consequently, the empirical Rademacher complexity satisfies Rn

(
F | Xn

1

)
−Rn(F ) is (b1−b0)2

4n sub-Gaussian
by Theorem 3.24.

1This quantity captures the richness of a family of functions by measuring the degree to which a hypothesis set can fit random
noise, and it plays an important role in generalization error analysis.

12



4 Uniformity, basic generalization bounds, and complexity classes

In this section, we will apply concentration bounds to learning problems, and provide the non-asymptotic
guarantee on the sub-optimality of the learned model by empirical risk-minimizing, mainly based on
Ma (2022); Mohri et al. (2018).

4.1 Setup

4.1.1 Supervised Learning

In supervised learning, we have a dataset where each data point is associated with a label, and we aim
to learn from the data a function that maps data points to their labels. Formally, suppose we draw a set
of n i.i.d. data points D = {x(i), y(i)}ni=1 from a specific joint probability distribution P over X ×Y , the goal
is to learn a function h : X → Y using the training data, i.e., h(x) = ŷ, which is also called a hypothesis
or model or predictor. We define a loss function to measure how good a model is, l : Y × Y → R, and
assume l(ŷ, y) ≥ 0, i.e., the difference between the prediction made by h and the true label.

Precisely, we aims to find a model h that minimizes the expected loss (or population risk, expected risk,
also well-known as generalization error Mohri et al. (2018)2):

L(h) ≜ E

(x,y)∼p
[ℓ(h(x), y)] (4.1)

In practice, we don’t have a way of optimizing over arbitrary functions. Instead, we work within a more
constrained set of functions H, which is called hypothesis family or hypothesis class, e.g., linear functions
or neural networks. Given one particular function h ∈ H, we define the excess risk of h with respect to
H:

E(h) ≜ L(h)− inf
g∈H

L(g). (4.2)

Generally, we need more assumptions about a specific problem and hypothesis class to bound absolute
population risk, hence we focus on bounding the excess risk.

Usually, the family we choose to work with can be parameterized by a vector of parameters θ ∈ Θ.
In that case, we can refer to an element of H by hθ , making that explicit.

4.1.2 Empirical risk minimization

Our ultimate goal is to minimize population risk. However, in practice we do not have access to the
entire population: we only have a training set of n data points, drawn from the same distribution as the
entire population. We can compute empirical risk, the loss over the training set, and try to minimize
that and find the minimizer of L, i.e., θ̂ ≜ argmin

θ∈Θ
L̂ (hθ). The paradigm is known as empirical risk

minimization (ERM):

min
θ∈Θ

L̂ (hθ) ≜
1
n

n∑
i=1

ℓ
(
hθ

(
x(i)

)
, y(i)

)
=

1
n

n∑
i=1

ℓ
((
x(i), y(i)

)
,θ

)
(4.3)

Besides, we know that empirical risk and population risk are equal in expectation (over the randomness
of the training dataset). This is one reason why it makes sense to use empirical risk: it is an unbiased
estimator of the population risk.

The key question that we seek to answer is: what guarantees do we have on the excess risk for the
parameters learned by ERM? The hope with ERM is that minimizing the training error will lead to
small testing errors. One way to make this rigorous is by showing that the ERM minimizer’s excess risk
is bounded.

2They define generalization error on binary classification under 0/1-binary loss, which can be applied more generally.
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4.2 Uniform Convergence and Generalization

Uniform convergence is a key tool for proving non-asymptotic guarantees on excess risk, where we have
bounds of the following form:

P

[
sup
θ∈Θ
|L̂(θ)−L(θ)| ≤ ϵ

]
≥ 1− δ (4.4)

Let’s look at a motivating example on why this type of bounds is useful. Assume we have a bounded
loss function, e.g., l ((x,y),θ) ∈ [0,1]. First, we can decompose the excess risk into three terms via tele-
scoping sums:

L(θ̂)−L (θ∗) = L(θ̂)− L̂(θ̂)︸       ︷︷       ︸
(1)

+ L̂(θ̂)− L̂ (θ∗)︸        ︷︷        ︸
(2)

+ L̂ (θ∗)−L (θ∗)︸          ︷︷          ︸
(3)

. (4.5)

we know the second term is non-positive since θ̂ is a minimizer of L̂. Thus,

L(θ̂)−L (θ∗) ≤ |L(θ̂)− L̂(θ̂)|+ L̂(θ̂)− L̂ (θ∗) +
∣∣∣L̂ (θ∗)−L (θ∗)

∣∣∣
≤ |L(θ̂)− L̂(θ̂)|+ 0 +

∣∣∣L̂ (θ∗)−L (θ∗)
∣∣∣

≤ 2sup
θ∈Θ
|L(θ)− L̂(θ)|.

(4.6)

This result tells us that if supθ∈Θ |L(θ)− L̂(θ)| ≤ ε/2, then excess risk L(θ̂)−L (θ∗) ≤ ε, which is exactly in
the form of the uniform convergence.

Let us try to apply our knowledge of concentration inequalities to this problem. Earlier we assumed

that ℓ((x,y);θ) is bounded, so we can bound (3) by Õ
(

1√
n

)
via Hoeffding’s inequality 2.9. However, we

cannot apply the same concentration inequality to (1): since θ̂ is data-dependent by definition, the i.i.d.
assumption no longer holds. (To see this, note that θ̂ depends on the training dataset

{(
x(i), y(i)

)}
, so the

terms in L̂(θ̂), ℓ
((
x(i), y(i)

)
; θ̂

)
, all depend on the training dataset too.) This is concerning: it is certainly

possible that L(θ̂)− L̂(θ̂) is large. You’ve probably encountered this yourself when a model exhibits low
training loss, but high validation/testing loss. That’s why we aim to construct uniform convergence, i.e.,
∀θ ∈Θ, L̂(θ) converges.

4.2.1 Derive uniform convergence bound

The high-level idea is as follows:

• Suppose we have a bound of the form Pr
[
|L̂(θ)−L(θ)| ≥ ε′

]
≤ δ′ for some single, fixed choice of θ.

• If we know all possible values of θ in advance, we can use the above bound to create a more general
bound over all values of θ.

Thus, we use the union-bound inequality to create the general bound:

Pr
[
∀θ ∈Θ, |L̂(θ)−L(θ)| ≥ ε′

]
≤

∑
θ∈Θ

Pr
[
|L̂(θ)−L(θ)| ≥ ε′

]
. (4.7)

We can then use Hoeffding’s inequality to deal with the summands as θ there is no longer data-dependent.

4.2.2 Intuitive interpretation of uniform convergence

Since uniform convergence implies generalization, if we know that population risk and empirical risk
are always "close," then the excess risk is "small" as well (Figure 2(a)). In fact, it is possible to show that
not only is L(θ) "close" to L̂(θ) for sufficiently large data, but that the "shape" of L̂ is "close" to the shape
of L as well (Figure 2(b)). This holds for the convex case; furthermore, there are conditions under which
this holds in the non-convex case.
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(a) (b)

Figure 2: These curves demonstrate how we apply uniform convergence to bound the population risk.
The blue curves are the unobserved population risk we aim to bound. The green curves denote the
empirical risk we observe. Though this curve is often depicted as the fluctuating curve used in Figure
2(a), it is more often a smooth curve whose shape mimics that of the population risk (Figure 2(b)).
Uniform convergence allows us to construct additive error bounds for the excess risk, which are depicted
using the red, dashed lines.

4.2.3 Finite hypothesis class

Theorem 4.1 (Uniform Convergence for Finite Hypothesis Class). Suppose that the hypothesis class H
is finite and that the loss function l is bounded in [0,1], i.e. 0 ≤ l((x,y),h) ≤ 1. Then ∀δ s.t. 0 < δ < 1

2 ,
with probability at least 1− δ, we have bound for uniform convergence

|L(h)− L̂(h)| ≤
√

ln |H|+ ln(2/δ)
2n

∀h ∈ H. (4.8)

As a corollary, we also have bound for excess risk

L(ĥ)−L (h∗) ≤
√

2(ln |H|+ ln(2/δ))
n

. (4.9)

Proof. The proof is in two steps:
1. Use concentration inequalities to prove the bound for a fixed h ∈ H, then
2. Let Eh = {|L̂(h)− L(h)| ≥ ϵ} :, and use a union bound across all the h. (Recall that if E1, . . . ,Ek are a

finite set of events, then the union bound states that Pr(E1 ∪ · · · ∪Ek) ≤
∑k

i=1 Pr(Ei).)

P(∃h s.t. |L̂(h)−L(h)| ≥ ϵ) ≤
∑
h∈H

Pr(|L̂(h)−L(h)| ≥ ϵ) ≤ 2|H|exp
(
−2nϵ2

)
. (4.10)

Take δ = 2|H|exp
(
−2nϵ2

)
, we obtain the bound.

Compared with standard concentration inequality, we have the such bound depending on each h,

∀h ∈ H, w.h.p. |L̂(h)−L(h)| ≤ Õ

(
1
√
n

)
. (4.11)
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In contrast, the uniform convergence bound we obtain from Theorem 4.1 is uniform over all h ∈ H:

w.h.p. ∀h ∈ H, |L̂(h)−L(h)| ≤ Õ

(
ln |H|
√
n

)
(4.12)

Hence, the extra ln |H| term that depends on the size of the finite hypothesis family H can be viewed as
a trade-off in order to make the bound uniform.

4.2.4 Infinite hypothesis class

We can’t generalize the results from the previous section directly to the case where the hypothesis class
is infinite, which is uncountable. However, if we consider a bounded and continuous parameterized space
of H, we can obtain a similar uniform bound by applying brute-force discretization.

Assume that the infinite hypothesis classH = {hθ : θ ∈R,∥θ∥2 ≤ B} . The intuition behind brute-force
discretization is as follows: Let Eθ = {|̂L(θ) − L(θ)| ≥ ϵ} be the "bad" events. We want the bound the
probability of any one of these bad events happening (i.e.

⋃
θ Eθ ). The union bound does not work

as we end up with an infinite sum. However, the union bound is very loose: these events can overlap
with each other significantly. Instead, we can try to find "prototypical" bad events Eθ1

, . . . ,EθN that are
somewhat disjoint so that

⋃
θ Eθ ≈

⋃N
i=1Eθi . We can then use the union bound on

⋃N
i=1Eθi to get a

non-vacuous upper bound.

Theorem 4.2 (Uniform Convergence for Infinite Hypothesis Class). Suppose ℓ((x,y),θ) ∈ [0,1], and
ℓ((x,y),θ) is κ-Lipschitz in θ with respect to the ℓ2-norm for all (x,y). Then, with probability at least
1−O(exp(−Ω(p))), we have

∀θ, |L̂(θ)−L(θ)| ≤O


√

pmax(ln(κBn),1)
n

 . (4.13)

Proof. See Section 4.3.2 in Ma (2022).

5 Other Content

5.1 Understanding Generalization Error: Bounds and Decompositions

The quantity analyzed in the previous section L(θ) is also known as Generalization Error, which is quite
important for learning theory. We have described the simplest type – uniform convergence bound based
on the capacity of the function class searched by an algorithm. Here we will discuss the generalization
error in a deeper view, refer to Mohri et al. (2018); Agarwal (2018).

In many learning algorithms, they may choose a sufficiently complex model to achieve low training
error L̂(θ), while the generation error would not always decrease together with training error. For ex-
ample, a high-degree polynomial kernel, a neural network with a large number of hidden nodes, and
so on. We observed that models of low complexity tend to underfit the data, while models of high com-
plexity tend to overfit the data, and they both suffer over the generalization error. The challenge is that
the "right" model complexity depends on the unknown data distribution, and so must also be estimated
from the data itself. This is known as the model selection problem.

There are two different views for understanding this issue. One is Estimation-Approximation Error
Decomposition, and the other one is Bias-Variance Decomposition.

5.1.1 Estimation-Approximation Error Decomposition

The Generalization error is decomposed as follows:

L(θ) =
(
L(θ)− inf

θ′∈Θ
L(θ′)

)
︸                 ︷︷                 ︸
Estimation Error in Θ

+
(

inf
θ′∈Θ

L(θ′)−L(θ∗)
)

︸                  ︷︷                  ︸
Approximation Error in Θ

+ L(θ∗)︸︷︷︸
Irreducible Bayes error

(5.1)
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Recall that the Bayes error is the smallest possible generalization error over all possible mapping; it
is an irreducible error associated with the distribution P , sometimes also called the "noise" intrinsic to P .
The approximation error ofHmeasures how far the best model inH is from the Bayes optimal classifier;
it is a property of the function class H. The estimation error measures how far the learned classifier hS
is from the best model in H; this is a property of the learning algorithm, and depends on the training
sample D (for a good learning algorithm, one would expect that the estimation error would become
smaller with increasing sample size n ). Figure 3 also demonstrates this idea, a tread-off between the
estimation error and approximation error.

(a) Complexity and Errors (b) Decomposition

Figure 3: For a fixed sample size, as model complexity increases, the approximation error decreases,
while the estimation error increases. A high value of either contributes to a high generalization error:
high approximation error is associated with underfitting; high estimation error is associated with over-
fitting.

Based on such decomposition, one can using structual risk minimization to allow the function class
H to grow with sample size n (so that the approximation error goes to zero), but does slowly that can
estimate a good function in the class (so that the estimation error also goes to zero). See Section 4.3 in
Mohri et al. (2018).

5.1.2 Bias-Variance Decomposition

The bias-variance decomposition aims to understand the average generalization error of the model hD
over any dataset with a fixed size, if we trained an algorithm on several different training datasets D.
Thus, our goal is to understand the behavior of average (expected) generalization error3,

ED [L̂(hD )] =
∑
D ′

P(D = D ′)L̂(hD ′ ) =
∑
D ′

P(D = D ′) · 1
n

n∑
i=1

(hD ′ (xi)− yD
′

i )2 (5.2)

Define an "average" model h̄(x) = ED [hD (x)], then the average (expected) generalization error can be
decomposed as follows4, refer to Agarwal (2018),

ED [L̂(hD )] = ED

[
(hD (x)− yD )2

]
= ED

[
(hD (x)− h̄(x) + h̄(x)− yD )2

]
= ED

[
(hD (x)− h̄(x))2

]
+ED

[
(h̄(x)− y + y − yD )2

]
= ED

[
(hD (x)− h̄(x))2

]
︸                   ︷︷                   ︸

Variance

+(h̄(x)− y)2︸      ︷︷      ︸
Bias

+ED

[
(y − yD )2

]
︸           ︷︷           ︸
Irreducible Error

(5.3)

3This decomposition is most natural in the context of regression under squared loss, and the sampled label yD of x in the
dataset D may not equal to its real label y.

4Note that here, the notions of bias and variance apply to an algorithm, not necessarily to a function class.
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The variance term is related to the "stability" of an algorithm: an algorithm with high variance has
low stability, in the sense that changing the training sample D a little can produce a very different
model hD . The practice of bootstrap aggregation (bagging), where one creates multiple randomly se-
lected bootstrap samples from a given training sample D and aggregates (averages) the models learned
from the various bootstrap samples, can be viewed as a practice aimed at reducing variance. This is
especially useful in reducing the error of algorithms that otherwise have high variance, such as decision
tree learning algorithms.

The bias term is related to the "accuracy" of an algorithm, and low bias means being closer to the
correct label in expectation, referring to Figure 4(b) and Fortmann-Roe (2012).

Looking at Figure 4, as more and more parameters are added to a model, the complexity of the
model rises and variance becomes our primary concern while bias steadily falls. For example, as more
polynomial terms are added to linear regression, the greater the resulting model’s complexity will be.
In other words, bias has a negative first-order derivative in response to model complexity while variance
has a positive slope.

(a) Complexity and Errors (b) Decomposition Example

Figure 4: For a fixed sample size, as model complexity increases, the bias typically decreases, while the
variance typically increases. A high value of either contributes to a high (average) generalization error:
high bias is associated with underfitting; high variance is associated with overfitting.

5.2 More examples

Similar issues also arise in the setting of bandits and RL. In particular, the uniform convergence is
fundamental for the class of UCB algorithms, which can be obtained through Hoeffding or Bernstein-
type inequality.

18



References

Agarwal, S. (2018). Lecture11 notes of cis 520 machine learning: Understanding generalization error:
Bounds and decompositions. URL : http : //www.shivani −agarwal.net/T eaching/CIS −520/Spring −
2018/Lectures/Reading/error − bounds − decompositions.pdf .

Duchi, J. (2021). Lecture notes for statistics 311/electrical engineering 377: Information theory and
statistics. URL: https://web.stanford.edu/class/stats311/lecture-notes.pdf.

Fortmann-Roe, S. (2012). Understanding the bias-variance tradeoff. URL : http : //scott.f ortmann −
roe.com/docs/BiasV ariance.html.

Ma, T. (2022). Lecture notes for machine learning theory: Cs229m / stats214. URL : https :
//raw.githubusercontent.com/tengyuma/cs229mnotes/main/master.pdf .

Mohri, M., Rostamizadeh, A. and Talwalkar, A. (2018). Foundations of machine learning. MIT press.

Wainwright, M. J. (2019). High-dimensional statistics: A non-asymptotic viewpoint, vol. 48. Cambridge
University Press.

19


	Introduction
	Classical bounds
	General Inqualities
	Sub-Guassian Variables and Bounds
	Sub-Exponential Variables and Bounds
	Bernstein's type Bound

	One-side Bound

	Martingale-based methods
	Martingale
	Concentration bounds for martingale difference sequences

	Uniformity, basic generalization bounds, and complexity classes
	Setup
	Supervised Learning
	Empirical risk minimization

	Uniform Convergence and Generalization
	Derive uniform convergence bound
	Intuitive interpretation of uniform convergence
	Finite hypothesis class
	Infinite hypothesis class


	Other Content
	Understanding Generalization Error: Bounds and Decompositions
	Estimation-Approximation Error Decomposition
	Bias-Variance Decomposition

	More examples


